Chào mừng quý vị đến với Website của Thầy Trần Sĩ Tùng - Trưng Vương - Qui Nhơn.

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

Bài tập Hình học 9 - Chương 1 - Hệ thức lượng

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Sĩ Tùng (trang riêng)
Ngày gửi: 10h:29' 24-11-2013
Dung lượng: 158.9 KB
Số lượt tải: 11719
Số lượt thích: 19 người (Phan Thị Thu Thủy, Trần Thị Vào, Tạ Thị Thanh Hoa, ...)


I. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG

Cho tam giác ABC vuông tại A, đường cao AH.
( Định lí Pi-ta-go: 
( ;  ( 
(  ( 

Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. AH là đường cao. Tính BH, CH, AC và AH.
ĐS: , , , .
Cho tam giác ABC vuông tại A có AC = 10cm, AB = 8cm. AH là đường cao. Tính BC, BH, CH, AH.
ĐS:
Cho tam giác ABC vuông tại A có BC = 12cm. Tính chiều dài hai cạnh góc vuông biết .
ĐS: , .
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 10cm, CH = 42 cm. Tính BC, AH, AB và AC.
ĐS: , , , .
Hình thang cân ABCD có đáy lớn AB = 30cm, đáy nhỏ CD = 10cm và góc A là .
a) Tính cạnh BC. b) Gọi M, N lần lượt là trung điểm AB và CD. Tính MN.
ĐS:
Cho tứ giác lồi ABCD có AB = AC = AD = 10cm, góc B bằng  và góc A là .
a) Tính đường chéo BD. b) Tính các khoảng cách BH và DK từ B và D đến AC.
c) Tính HK. d) Vẽ BE ( DC kéo dài. Tính BE, CE và DC.
ĐS:
Cho đoạn thẳng AB = 2a. Từ trung điểm O của AB vẽ tia Ox ( AB. Trên Ox, lấy điểm D sao cho . Từ B kẽ BC vuông góc với đường thẳng AD.
a) Tính AD, AC và BC theo a.
b) Kéo dài DO một đoạn OE = a. Chứng minh bốn điểm A, B, C và E cùng nằm trên một đường tròn.
ĐS:
Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy các điểm M, N sao cho . Chứng minh: AM = AN.
HD: (ABD  (ACE ( .
Cho tam giác ABC vuông tại A, đường cao AH. Biết  và AH = 420. Tính chu vi tam giác ABC.
ĐS: . Đặt . Từ AH.BC = AB.AC ( .
Cho hình thang ABCD vuông góc tại A và D. Hai đường chéo vuông góc với nhau tại O. Biết , tính diện tích hình thang ABCD.
ĐS: . Tính được: OB = 4, OD = 9, OC = 13,5.


















































II. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN

1. Định nghĩa: Cho tam giác vuông có góc nhọn (.
; ; ; 
Chú ý:
( Cho góc nhọn (. Ta có: .
( Cho 2 góc nhọn (, (. Nếu  (hoặc , hoặc , hoặc ) thì .
2. Tỉ số lượng giác của hai góc phụ nhau:
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
3. Tỉ số lượng giác của các góc đặc biệt:

4. Một số hệ thức lượng giác
; ; ;
; ; 


Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 64cm và CH = 81cm. Tính các cạnh và góc tam giác ABC.
ĐS:
Cho tam giác ABC vuông tại A. Tìm các tỉ số lượng giác của góc B khi:
a) BC = 5cm, AB = 3cm. b) BC = 13 cm, AC = 12 cm. c) AC= 4cm, AB=3cm.
ĐS: a) ; 
Cho tam giác ABC vuông tại A, có AB = 10cm và AC = 15cm.
a) Tính góc B. b) Phân giác trong góc B cắt AC tại I. Tính AI.
c) Vẽ AH ( BI tại H. Tính AH.
ĐS:
Tính giá trị các biểu thức sau:
a) .
b) .
c)  d) 
e)  f) 
ĐS:
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng ZIP và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓